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Abstract. A simple model for the formation of polytypes in ZnS is presented. It is based on 
theoretically calculated stacking fault energies for this material. Polytypes are explained as 
metastable structures occurring during the wurtzite-zincblende phase transition. A Monte 
Carlo simulation of the process results in structures very similar to those observed in 
experiment. The same mechanism also explains the main features of x-ray data obtained 
from disordered highly twin-faulted cubic crystals of ZnS. 

1. Introduction 

ZnS is known to exhibit hundreds of different polytypic crystallographic structures. In 
an earlier paper (Engel and Needs 1990, hereafter referred to as I), first-principles total 
energy calculations on five specific structures have been presented. These calculations, 
though not including finite temperature effects, led to the conclusion that all possible 
ZnS polytypes are actually very close in structural energy. This helps to answer the 
question of how ZnS differs from other materials which do not show polytypism: the 
basic requirement for polytypism is that all the observed polytypic structures have to be 
nearly degenerate in energy. In the present paper, I address the problem of how the 
specific structures observed might be formed during the phase transition from the 
hexagonal to the cubic phase and why some polytypes are less likely to be formed than 
others. 

In order to describe the polytypic structures, a spin notation will be used where the 
‘spins’ si take the values + 1 or - 1 (also written as ‘ t ’ or ‘ .1 ’) depending on the way one 
hexagonal layer is stacked on top of the preceding one (see figure 1 of I). Two parallel 
spins represent a cubic stacking arrangement and antiparallel spins a hexagonal stacking 
arrangement. In the Zhdanov (1945) notation, the sequencesof spin symbols are further 
simplified by transforming them into sequences of numbers denoting the widths of 
bands of parallel spins within a repeat unit of the polytype. The hexagonal structure 
( . . .  t .1 t .1 t .1 f .1 . . . )  isthenwrittenas(l) , thecubic( . . .  t t t t t . . . )  as(=) 
and the structure ( .  . . t t t 1 .1 4 . . . )  as (3). 

In terms of this spin representation, the total free energy of all possible ZnS polytypes 
can be accurately described by an expression of the form (I) 

r / 

where the Jr  are temperature-dependent effective inter-layer interaction parameters. J ,  
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is positive and stabilises the cubic ( x )  structure at 0 K. J 2  was calculated as being nega- 
tive and extremely small compared to J1. All longer-ranged interactions J 3 ,  etc are 
negligible at T = 0. 

The dynamical model for the transformation of a ‘hexagonal’ spin arrangement 
( . . . f 1 t 1 t 1 t .1 . . . ) to the energetically more favourable polytypes investigated 
in the present paper has some features in common with an earlier qualitative model 
(Mardix 1986). It assumes that the transformation proceeds via a single atomic process, 
namely the successive reversal of single spins from ‘up’ to ‘down’ or vice versa, leaving 
all the other spins in the sequence unchanged. As we will see, this restriction to a single 
atomic process ensures that the spin sequence, rather than completely transforming to 
the(=)phase, endsupin ametastablepolytypicstructure. In termsoftheactualsequence 
of ZnS layers, spin reversal corresponds to slipping one part of the crystal with respect 
to the other along a basal plane perpendicular to the hexagonal axis. This type of fault 
is often called a ‘deformation fault’. The model assumes that these faults are introduced 
into the structures at random locations, but that the probability of their occurrence is 
related to their stacking fault energy, which varies according to the orientation of the 
layers in the vicinity of the fault. In addition, the nth spin in the spin sequence is 
topologically linked to the (n + N)th and the (n - N)th spin. In the crystal, this cor- 
responds to the presence of a screw dislocation (SD) with Burgers vector N in units of 
the layer separation. In the true three-dimensional geometry of the crystal containing 
such a SD, the basal planes are in fact helices with step height N ,  and layers with a 
separation N are therefore connected. This connection is responsible for the periodicity 
of the resulting structures. In a projection of this 3D geometry onto a one-dimensional 
spin sequence it is simulated by a topological link between spins. In the final version of 
the model we also allow for different velocities of faults propagating along these links 
(around the screw). The model is devised to simulate the partial transformations taking 
place when a ZnS crystal whisker containing a single giant SD of step height N is cooled 
down from its temperature of growth of around 1700K to room temperature. The 
structures obtained from simulations using this model and the statistical distribution of 
their Zhdanov numbers are remarkably similar to those observed in experiment (Mardix 
1986) (sections 4 and 5), and the model is also consistent with x-ray data from randomly 
disordered cubic crystals obtained by annealing hexagonal crystals (Sebastian and 
Krishna 1984) (section 3). 

2. The basic transformation mechanism 

The idea of modelling the transition from the hexagonal phase to less-ordered polytypes 
by a dynamical process based on inter-layer interaction parameters is not new. For 
example, Kabra and Pandey (1988) investigated the transition from (1) to a disordered 
phase in S ic ,  choosing interaction parameters J1, J z  and J 3  such that J 2 / J 1  = J 3 / J 1  = 
-1. With this choice of parameters, the (3) phase is the thermodynamically stable 
configuration (Selke et a1 1985), and it is not surprising that the resulting disordered 
structures contain many 3-bands. 

The present model for the spontaneous ordering of a ‘hexagonal’ spin arrangement 
towards disordered or polytypic phases when quenched into the stability range of the 
cubic (t.) phase is based on the following simple rules: 

(i) The interaction parameters at the effective transition temperature, which is the 
temperature where the rate of transformation has its maximum and which is well below 
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Figure 1. Assumed temperature dependence of 
the inter-layer interaction parameters J ,  and J 2 .  
At To, the (1) phase becomes unstable, which 
is reflected by a change in the sign of J , .  The 
parameters of the simulation correspond to TI ,  
which is the temperature where the rate of tran- 

J;. A 1 /To l h  sition has its maximum. At  T = 0, the parameters 
have the value calculated in I .  

1 / T  

J, 

the temperature of growth, show the same qualitative behaviour as those calculated for 
ZnS at T = 0, with the interaction J 1  being positive and dominant and with a small 
negative J 2 .  All longer-ranged interactions are neglected. 

(ii) The atomic process for the transformation is the reversal of a single spin. 
(iii) The probability of introducing a stacking fault at a particular position in the spin 

sequence is related to the stacking fault energy for this particular fault, such that a larger 
energy gain results in a higher probability for the fault. With only next-nearest-neighbour 
interactions being significant, the following transformations have to be distinguished: 

(1) .  . . J t J t J, . . .+ . . . .1 t t J . . . 
( 2 )  . . .  .1 t J t t . . . + . . .  .1 t t t f . . .  
(3). . . t t 4 t f . . . +. . . t t t t . . . 
(4) . . .  J, J 1 t $ . . . - + . . .  1 J, f t i... 

A E  = - (U, + 21J21) 
A E = - 2 J l  
A E  = - (U1 - 2/J21) 
A E = - 2 1 J 2 ]  

All other transformations do not reduce the energy of the structure and are therefore 
forbidden. Because J1 % J z ,  I will distinguish between two groups of faults only. The 
first group, which I call fast faults, includes faults 1, 2 and 3. These faults reduce the 
hexagonality h of the structure, defined to be the ratio of the number of antiparallel 
spins with respect to  the total number of spins. As antiparallel spins have a large positive 
energy due to the positive value of J1, a fault reducing the number of antiparallel spins 
provides a comparatively large energy gain proportional to J1. Fault 4, which I call a 
slow fault, does not change the hexagonality of the structure, but the second-nearest- 
neighbour interaction provides a small energy gain of the order of magnitude of .I2. 
Forbidden faults will be referred to as no faults. Because of the different stacking fault 
energies for the three types of fault, we expect their introduction to occur at different 
rates, which explains the terminology. 

I now address the above rules in more detail: 

(i) As mentioned above, the total energy calculations on ZnS polytypes yield the 
inter-layer interaction parameters for T = 0 only. Not much is known about their 
behaviour at finite temperatures. The temperature dependence arises mainly from the 
phonon contribution to the free energies. For Sic ,  it has been shown by Cheng et a f  
(1990) that the differences in phonon frequencies for different polytypic structures result 
in a small, but significant change in the values of J ,  at high temperatures. A similar 
investigation for ZnS has yet to be carried out. All we can say is that at high temperatures 
the interactions must be such that the hexagonal phase (1) becomes the stable modi- 
fication, which indicates that the phonon contribution to the free energy changes the 
sign ofJ l  somewhere beneath the transition temperature of about 1400 K (figure 1). The 
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present choice of parameters is based on the assumption that the rate of transformation 
reaches its maximum at a temperature which is significantly below the temperature 
where (1) and (t.) are truly degenerate. This is plausible since there may well be a certain 
energy barrier for the movement of a stacking fault which cannot be overcome unless 
the energy gain from the structural change is sufficiently large. At the point where 
this is the case, it is assumed that the ratio JI/IJ21 has become almost temperature 
independent and large compared to 1. 

(ii) The experimental evidence for this assumption comes from optical investigations 
on thin crystal whiskers containing a giant SD. It was found that originally straight 
whiskers start to develop kinks as soon as the temperature is lowered below the transition 
temperature, and that the kink angles observed are consistent with a mechanism where 
single deformation faults run around the SD (Mardix et a1 1968). Recent work on 
disordered cubic crystals of ZnS (Sebastian and Krishna 1984, Pandey and Lele 1986) 
also suggests that the transformation mainly proceeds via the introduction of defor- 
mation faults. 

(iii) This is the most important modification of the simple simulation by Kabra and 
Pandey (1988). It will be justified mainly by the success of the model. The assumption 
is plausible due to the different stacking fault energies for fast and slow faults. 

3. Monte Carlo simulation of the (1) to (m) transformation 

In order to test assumptions (i)-(iii) and to calculate an estimate for the probabilities of 
occurrence a. and Po for fast and slow faults respectively, a Monte Carlo simulation 
similar to the study by Kabra and Pandey (1988), but with a different choice of parameters 
J1 andJ, and the distinction between the two types of fault, was performed. The resulting 
structures show no periodicity because no SD is present. The case with SDS present will 
be studied in the following sections. 

An array of antiparallel king spins corresponding to the initial hexagonal con- 
figuration is quenched to the stability range of (x). We assume that at the effective 
temperature of transition, we are well within the stability range of (w), henceJ1 + lJ21. 
At each time step, arandom position in the spin sequence is chosen and the corresponding 
spin is flipped with probabilities ao, bo and 0 depending on whether the respective fault 
is a fast, slow or no fault. The simulation is repeated for various values of Po/ao ranging 
between 0 and 1. Each simulation, performed on an array of 2000 spins, is run until no 
further energy gain from a single atomic process can be achieved, yielding a frozen-in 
metastable structure consisting of small domains of parallel spins. In the usual crys- 
tallographic terminology, the fault between two adjacent cubic domains of opposite spin 
orientation corresponds to a twin fault, and the resulting structure can be described as 
a highly twin-faulted disordered cubic structure. 

In order to allow comparison with experimental data, it is desirable to know the 
diffraction pattern of an arbitrary layer-sequence. Transforming the spin sequence 
into the conventional ABC notation for close-packed structures and calculating pair- 
correlation functions P(m), Q(m) and R(m) of finding the (n + m)th layer in stacking 
position A ,  B or C respectively if the nth layer is in position A, it is possible to deduce 
theoretically the diffracted intensity from a stack of N layers along the (1OL) direction 
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of a three-layered hexagonal cell. The intensity I is given by (Holloway and Klamkin 
1969) 

N -  1 

Z(L)  = N + 2 ]c ( N  - m) (J 2) cos(mQ) - J I," sin(mD)) (2) 
m = l  

where 

1;) = P(m) - i(Q(m> + R(m)) JE) = ( f i / 2 ) ( R ( m j  - Q(m)) <D = (2n/3)L. 

Instead of having only one atom in the basis, as assumed in the derivation of (2), 
there are two different types of atom present in ZnS. For the special case where the 
scattering vector K points in the (1OL) direction, the intensity has to be multiplied by an 
L-dependent factor 

S ( L )  = fZ"(Ll2 +fs(L)2 + 2fzn(Llfs(L) COS(JGLI2) (3) 

wheref,, andf, are the atomic form factors for Zn and S respectively. Their values and 
dependence on the scattering angle are taken from Macgillavry and Rieck (1962). The 
resulting intensity distribution for Po = 0, 0.1 and 0.3 is shown in figure 2(a), whereas 
figure 2(b) shows the same distribution with the diffraction pattern of a randomly faulted 
2H ((1)) crystal being superimposed. The latter was obtained by finishing the simulation 
at a point where only 25% of all possible faults were inserted. As is expected from the 
theory of diffraction from randomly twin-faulted cubic crystals (Warren 1969), the peaks 
corresponding to the { x )  structure are broadened asymmetrically and show negligible 
peak shifts. Comparison with x-ray data (Sebastian and Krishna 1984) shows good 
agreement both in width and intensity of the main peaks. The appearance of enhanced 
intensity at positions corresponding to the 6H ((3)) structure is seen to be solely due to 
the special mechanism of stacking fault insertion, which effectively favours the insertion 
of faults at 2-layer separation. No additional mechanism favouring the insertion of faults 
preferentially at 3-layer separation is needed to explain this feature. Figure 2(b) also 
shows that the enhanced intensity at 2H positions found in some of the specimens 
investigated experimentally can be explained by assuming that the transformation pro- 
ceeds at different speeds in different parts of the crystal, making the transformation in 
one part less complete than in the other. 

The hexagonality in the case Po = 0, calculated to be h = 0.135, is reflected by a 
broadening of the 3C ((CO)) peaks to a half width 6 = 0.113 in units of L.  The latter is in 
good agreement with experimental half-widths reported for specimens obtained from 
annealing hexagonal crystals (Sebastian and Krishna 1984). However, applying the 
formula used by the authors of that reference to relate h and 6, one would deduce a 
value h = 0.106 from the peak broadening, which is slightly smaller than the exact value, 
probably because the formula becomes inaccurate at the high fault concentrations 
encountered in these specimens. For example, cubic domains of width 3 (corresponding 
to h = 4) do not contribute to the peak broadening, but show up as separate (6H) peaks 
in the intensity distribution. This is important, because a significantly smaller value of h 
in real specimens would cast doubt on the purely random nature of the stacking fault 
insertion. One would have to assume, as has been suggested, by Pandey and Lele (1986), 
that there are correlations between faults, making it more likely that after initial random 
insertion of a fault a second fault occurs in the vicinity of the first one, which leads to the 
growth of the cubic nuclei.As already pointed out in I, the short range of the inter-layer 
interaction parameters J, makes such a growth mechanism unlikely in the absence of 
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0 0.5 1 1.5 2 2.5 3 

tl I I  

~ 2H 
3c 

-3  -2 - 1  0 1 2 

(10 L) 

Figure 2. (a )  Calculated intensity along the (10 L )  direction of a three-layered hexagonal cell 
of a disordered highly twin-faulted cubic ZnS crystal obtained from simulated annealing of 
a 2H crystal for three different values of Po/.o. ( b )  Intensity for Po = 0 combined with the 
diffraction pattern of a faulted hexagonal crystal (25% faulting). 

external stresses: it is energetically no more favourable to activate thermally a fault two 
layers away from another fault than anywhere else. This assumption is corroborated by 
the agreement between the simulated and experimental diffraction patterns. Exceptions 
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Figure 3. Hexagonality h and halfwidths S of the 3C peaks in the diffraction pattern along 
(10 L) diffuse streaks obtained from simulated annealing of a 2H structure as a function 
of the ratio of fault probabilities /3o/cUo. The range of parameters best reproducing the 
experimental peak broadening is indicated. 

seem to be possible: for example, in some of the specimens investigated by Sebastian 
and Krishna (1984), 6 was less than 0.113, the value found in the simulation for P o  = 0, 
indicating some correlations between faults. In the following, I will neglect these cases. 

In order to estimate an upper bound for the probability Po of slow faults, figure 3 
shows h and 6 as a function of Po/cu,,. In the experiments, 6 is between 0.08 and 0.15 
yielding 

0 < &)/a0 < 0.1. (4) 

4. Transformation mechanism in the presence of a giant SD 

In the case where the crystal contains a giant SD (as is found in most specimens containing 
polytypes) the transformation, rather than leading to a disordered twinned cubic phase, 
leads to a regular layer sequence whose periodicity is determined by the length of the 
Burgers vector of the dislocation. Most polytypes are found in thin vapour-grown crystal 
whiskers, where there is overwhelming experimental evidence in favour of a periodic 
slip mechanism operating. The mechanism, described in detail by Alexander et a f  (1970), 
assumes that at some stage during the transformation stacking faults are introduced into 
the originally hexagonal whisker, either thermally or as a result of external or internal 
stresses. As soon as the temperature is sufficiently low to provide the negative stacking 
fault energy needed for the propagation of the faults, they start expanding along the 
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Table I .  -4verage bandwidth l / h  of ZnS polytypes as a function of the number of layers per 
unit cell N .  The first column shows the values calculated from Mardix’s (1986) experimental 
list, columns 2 and 3 the values obtained from simulations as described in sections 4 (P/a = 
0.18) and 5 (u,/L+, = 0.25, Po = 0, f ,  = 100t,/N) respectively. Polytypes containing 1s are 
not included in the list. 

~~ ~ 

Bandwidth I /h  Bandwidth 1/h Bandwidth l / h  

N Exp Siml Sim2 N Exp Sim 1 Sim2 1%‘ Exp Sim1 Sim2 

2 -  - - 16 4.73 4.73 4.95 30 5.63 7.50 11.25 
4 2.00 2.00 2.00 18 4.62 5.03 5.52 32 7.11 4.92 5.33 
6 3.00 3.00 3.00 20 4.75 5.09 4.83 34 6.80 6.80 4.86 
8 4.00 4.00 4.00 22 5.87 6.77 7.33 36 6.43 6.00 5.29 

10 3.75 3.75 3.75 24 4.92 5.37 5.59 38 9.50 4.75 5.43 
12 4.15 4.15 4.15 26 4.93 5.96 5.96 40 6.67 5.00 4.44 
14 4.67 4.38 4.67 28 6.00 5.60 4.94 44 14.7 4.89 5.50 

Total average: Exp: 5.08; Sim 1: 5.03; Sim2:5.07. 

helical basal planes formed by the giant SD at the axis of the whisker. At the end of the 
process, stacking faults have been inserted periodically into the structure, the period 
being determined by the Burgers vector of the SD. 

Applying the simple rules of section 2 to small sequences of N spins where the Nth 
spin is joined to the first spin yields polytypes which are in remarkable agreement 
with the experimentally observed structures. It is straightforward to produce a list of 
theoretical polytypes similar to Mardix’s (1986) experimental list. For each N (A’= 
4, . . . ,44), 300 polytypes are created by a Monte Carlo process as in section 3, and if 
j ( N )  is the number of experimentally observed polytypes of a given periodicity N ,  then 
the j ( N )  most frequently resulting polytypes of that length are included in the list. The 
process, of course, completely eradicates all 1s in the Zhdanov sequences, whereas 12 
out of194experimentallyobservedpolytypes containoneor more 1s. lscan, in principle, 
be created by finishing the simulation after a finite number of steps, which corresponds 
to rapidly cooling down the crystals in a real experiment. For the quantitative analysis, 
the polytypes containing 1s were not included into the experimental list because their 
creation in a simulation could be arbitrarily tuned by the number of steps allowed 
until finishing the simulation, The table of simulated polytypes is compared to the 
experimental one first by comparing the average hexagonality of each class Nof polytypes 
(table 1) and second by counting the total number of occurrence g ( k )  of any given 
Zhdanov number k ( k  = 2, . . . ,40)  in both the simulated and experimental lists (table 
2). The only parameter going into the simulation is the ratio @/a. A smaller value 
decreases the average hexagonality and increases the number oi odd Zhdanov numbers 
(for @ = 0, no even numbers are produced at all), a larger value increases the hex- 
agonality and decreases the odd Zhdanov values. By trial and error, the best agreement 
with experiment was found for @/a = 0.18, but the results are still in fairly good agree- 
ment for 0.17 < @/a < 0.20. The first column of table 1 lists the average hexagonality 
of experimentally observed polytypes of a given repeat unit iV calculated from the list of 
currently identified polytypes given by Mardix (1986). For large N ( N  > 28), the values 
are not very meaningful because of the small number of samples in each class. Also, a 
few of these long-period polytypes consist of a small number of very large bands of 
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Table 2. Frequency of occurrence g ( k )  of Zhdanov numbers k = 2, . . . ,44 from the exper- 
imental list of polytypes (Mardix 1986, row 1) and from simulations as described in sections 
4 and 5 (Sim 1 and Sim 2 respectively), 

k 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 nodd 
nexp 203 123 60 24 13 10 3 9 0 3 2 1 0 2 1 0 1 1 0 456 

nS,,,,, 204 92 56 39 19 15 8 9 2 3 2 0 1 0 0 0 0 0 0 450 
as,,,,, 211 98 75 39 19 14 8 6 3 4 0 0 0 1 0 0 0 0 0 478 

k 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 neve" 
nexp 142 6 6 3 5 2 5  9 3 4 1 3  1 1  0 1 0  0 0 1 0  0 0 2 9 2  
nS,,,,, 159 44 29 18 13 3 4 2 1 1 2 0 0 0 0 0 0 0 0 0 276 
nS,,,,* 176 35 36 18 13 9 6 2 2 0 1 0 0 0 0 0 0 0 0 0 298 

parallel spins only, which indicates that the insertion of faults in the corresponding 
samples was not completely uncorrelated. Instead, some mechanism inducing the sim- 
ultaneous introduction of a number of neighbouring faults might have operated in these 
crystals. Neglecting these cases, we find the average hexagonality of the structures to 
level off between 17 and 20 per cent as N is increased. From figure 3 ,  we find that this 
corresponds to a probability ratio 0.1 < P/a < 0.2 for slow and fast faults, which is in 
agreement with the value chosen for the simulation which gives the best results. Note 
that in the presence of a SD a and /3 differ from the probabilities a. and P o  of initial 
insertion of faults of either type (see below), hence there is no disagreement to the 
results of the previous section. 

5. A more realistic model 

In order to gain a deeper understanding of the statistics governing the insertion of faults 
into a crystal and to explain why the extremely simple model given in the last section 
accounts so well for the distribution of Zhdanov numbers in the observed polytypes, I 
will discuss a more realistic model of the phase transition. The model has the following 
main features: 

(i) As before, the crystal is represented by a spin sequence with a topological link 
between the nth and the ( n  - N)th and ( n  + N)th spins meant to simulate a SD with a 
step height of N layers. 

(ii) Fast and slow faults are randomly inserted into the spin sequence with prob- 
abilities a. and Po.  The faults dissociate into two partials moving into opposite directions 
along the topological links, as specified in (iii). 

(iii) A fault at position n causes the subsequent introduction of a fault at position 
n + N (or n - N ,  depending on the direction of the fault propagation) after a time to 
which is inversely proportional to the fault velocity. Hence the faults propagate along 
the topological links, which corresponds to the movement of Shockley partials along the 
helical basal planes provided by the SD. The velocities of fast and slow faults are U ,  and 
o b  respectively, where U ,  > u b .  
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I "  

Figure 4. Schematic drawing of the interaction 
between two deformation faults moving along the 
spin sequence in opposite directions on neigh- 
bouring layers. As the faults meet, their stacking 
fault energy change, reducing their velocity from 
U, to Ub. 

(iv) If faults moving into opposite directions meet on the same or on neighbouring 
planes, it can easily be seen (figure 4) that their stacking fault energy becomes less 
negative or even positive. A less negative stacking fault energy causes the fault to move 
at a smallervelocity. An example for this is given in figure 4: two fast faults are effectively 
converted into slow faults. A positive stacking fault energy stops the movement com- 
pletely. 

We consider an arbitrary subsequence of N spins within the spin chain, where N is the 
periodicity of the polytypes, and determine the probability of a fault occurring at a 
particular position within this sub-sequence. For this purpose, we average over a large 
ensemble of similar spin chains containing this particular sub-sequence. Clearly, posi- 
tions in the sub-sequence where introduction of a fault causes the same change in 
structural energy have equal fault probabilities. Again, we distinguish between positions 
where the energy change is proportional to J 2  and J1 respectively. Without loss of 
generality, we can reduce the problem to finding the probability ratio @/&of introducing 
a fault at positions 3 or 4 in the sequence ( t t t .1 t ). This ratio should be time 
dependent since there are two time-scales in the simulation: the time between insertion 
of two faults and the inverse fault velocity, which in a real transformation process are 
also likely to vary independently with temperature. We consider two limiting cases: 

(a) At  the beginning of the process, the probability is simply given by the probability 
of initial insertion of a fault (see section 3 ) :  

B/&  = P o b o  (t+ 0). ( 5 )  
(b) At  a later stage of the transformation, initial creation of new faults becomes 

increasingly unlikely, as the number of untransformed spins decreases. Instead, we have 
a large number of moving faults. Consider the fault on position 2 of the sequence 
( T t t & 7' ). This fault moves along the whisker until it interacts with a fault moving 
in the opposite direction. In a long whisker containing many faults, it is equally likely 
that this fault is in either of the positions 3 or 4. Hence, it is equally likely to have a fault 
occurring in either of these positions within the transformed region. Now, we consider 
the combined flux of faults of a certain type through many similar specimens forming 
the ensemble. This depends not only on the number of faults of either type (which should 
be equal on average), but also on their velocity. Hence, as faults in position 4 m,ove 
faster than those in position 3, we find that the total flux of faults in position 4 within the 
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transformed region is larger than the flux of faults at position 3. Consequently, the 
ensemble averaged probability of a fault intersecting our sub-sequence on position 3 or 
4 is proportional to the fault velocity: 

(t+ CO). 

From this qualitative argument, we expect that for general times t ,  we have the inequality 

Replacing /3/a by an effective mean value, we get back to the simulation of the previous 
section. This is the justification of the model presented in the previous section. 

A full analysis would also have to consider finite size effects: ‘creation’ of a fault by 
interaction with already existing faults (process b) can only occur during the finite time 
it takes the fault at position 2 to traverse the whole whisker; after that, a fault at position 
3 or 4 can be formed only by thermal activation of a new fault on the corresponding 
position somewhere in the whisker (process a). This size effect should become small if 
the whisker is long enough to make it certain for every moving fault to encounter another 
one moving in the opposite direction on neighbour or second-neighbour planes. 

Despite these complications, most general features of the model depend only on the 
choice of /3,/a0 and ub/ua ,  and the model gives polytypes similar to the experimental 
ones and those obtained from the previous model (section 4) for a rather wide range of 
parameters. A simulation of the process was carried out to compare the resulting 
polytypes with those from section 4 and with experiment. For every N ( N  = 4, . . . ,44) 
a spin sequence of M X N antiparallel spins, where M = 100, was relaxed according to 
rules (i)-(iv) under the following additional assumptions: 

(v) following the results of section 3, which suggests that initial insertion of 
slow faults is extremely unlikely compared with the insertion of fast faults, we set 
Po/ao = 0-thermal activation of faults occurs only if the hexagonality of the structure 
is reduced. 

(vi) The thermal activation of initial faults is simulated by the following procedure: 
at an average rate l / t l  ( t l  being the average time between insertion of faults), a spin is 
randomly chosen among all spins in the sequence; this spin is flipped if and only if the 
corresponding fault is a fast fault. The time t ,  is chosen as Mt,/N, where Mt,  is the 
time for a fast fault to move along the whole whisker. This ensures that the insertion 
probability per unit length of the whisker is constant for varying N and that any given 
fault is likely to interact with many other faults before reaching the end of the whisker. 

The resulting spin sequence is found to be segmented into many regions of varying 
size m N  ( m  integer), each of which contains a single polytype. Of course, all polytypes 
from a single simulation belong to the same family N determined by the SD. This 
segmentation is exactly what is found in experiment (Mardix et a1 1987). In the present 
model, a border between two such regions occurs because the interaction of two faults 
moving in opposite directions changes their energy from negative to positive, thus 
stopping the movement of both faults. 

Repeating the simulation 100 times for each N and choosing randomly a few sub- 
sequences of length N within each of the resulting structures, these were statistically 
analysed in exactly the same way as described in section 4. The results for ub/u, = 0.25 
are listed in tables 1 and 2 and show fairly good agreement with both the distributions 
from section 4 and with experiment; small deviations are easily explained by the small 
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number of samples available for the statistical analysis of the experiment. Table 3 shows 
the most frequently resulting polytypes for N = 4, . . . ,20.  Similar to what was found 
for the parameter @/a in section 4, the results depend relatively weakly on changes in 
ub/u,  over a wide range. Decreasing the velocity ratio increases the number of odd 
elements, increasing it increases the even elements. 1s can be created by finishing the 
simulation after a finite number of steps. 

6. Discussion 

Given the number of simplifications in the model, it is somewhat surprising that it should 
give such an accurate description of the statistics of the Zhdanov numbers of ZnS 
polytypes. 

One simplification which could easily be removed by assigning a mean free path to 
each fault is that the model does not explicitly allow for possible interactions between 
the moving partials and other types of obstacle like impurities or lattice defects, which 
in some cases might impede or even stop the propagation of a fault. Experiment, 
however, shows that faults move along the whisker over considerable distances, making 
this a minor effect. Another possible complication is that faults might not always remain 
in the same glide-plane, but that there could be mechanisms by which they change to, 
say, a neighbouring plane during their propagation. 

Furthermore, the ratio of the fault velocities and the rate of initial insertion of faults 
are certainly temperature and hence time dependent. These parameters may also vary 
with impurity concentration or pressure. This does not cause too serious a problem as 
long as the variation in the ratio between them is not too large, because as we have seen 
the main results of the simulation are relatively insensitive to changes in the parameters. 

The model hinges critically on the assumption that the fault velocities depend on the 
stacking fault energies and that they are small enough to allow interactions between 
faults which originate from various places in the whisker. The latter assumption seems 
justified since the partial has to move around a helix with very low step height, making 
the total path length from one end of the whisker to the other extremely long. Also, the 
segmented structure of the experimentally observed whiskers indicates that faults in 
general do not traverse the whole whisker at once. 

Normally, in the theory of fault or crack propagation in crystals, one finds a relation- 
ship between the crack velocity and the applied external stresses such that a higher stress 
results in a higher velocity. In our case, this stress is provided by the internal force from 
the negative stacking fault energy. If the relationship between velocity and stress were 
linear, we would expect u b / U ,  = 1J21/J1, the ratio of the stacking fault energies for slow 
and fast faults. At  T = 0 K, IJ21J1 = 0.05 according to I, but probably the value ofJ ,  near 
the transition temperature is smaller than the calculated one, bringing the ratio closer to 
0.25, which is the velocity ratio giving best agreement with experiment in the simulation. 
Comparison of the parameter values also shows that equation (7) holds for the values 
of po/a0, @/a and u b / U ,  quoted in sections 3, 4 and 5 respectively. Actually p / a  and 
ub/v, are rather close, indicating that the probability of a fault occurring at a fast or slow 
fault position is mainly determined by its velocity rather than the probability of initial 
insertion, This explains the relatively large occurrence of even numbers in the Zhdanov 
sequence: although faults are initially activated on fast fault positions only, which by itself 
creates only cubic domains with an odd number of layers, the interaction mechanism of 
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Table 3. List of the most frequently occurring polytypes found in 100 simulation runs for the 
modelofsection5withu,/ub = 0.25,p0 = O , t ,  = 100to/NandN = 4,. . . ,20. Nistherepeat 
period of the polytypes. An asterisk in front of the Zhdanov number indicates that the 
corresponding structure or that of a polytype with the same numbers in different order has 
not yet been found experimentally. The polytype (m), which is found in all simulations with 
small Burger vector N ,  was not included in the statistical analysis of tables 1 and 2, the 
polytype (33) which is found both for N = 6 and N = 12 was included only once. 

No of No of 
N Polytype occurrence N Polytype occurrence 

4 (30) 198 16 13 3 29 
2 2  102 9 1  28 

*11 5 24 
6 (p) 129 14 2 19 

3 3  95 * 9 3 2 2  17 
4 2  76 10 6 17 

* a 3 3 2  14 
8 5 3  121 7 3 3 3  13 

6 2  80 " 3 5 2  12 

4 4  8 1 3 4 2  11 

7 3  6 1  " 6 5 3 2  9 

5 5  38 
3 3 2 2  23 18 7 5 3 3  23 
6 4  22 15 3 20 
4 2 2 2  11 *11 7 15 

7 3 6 2  12 
12 9 3 19 7 3 5 3  11 

7 5  48 13 5 11 
10 2 3 1  * 9 9  10 

(CO) 16 5 5 3 3  11 

10 8 2 15 (CO) 10 

(30) 58 * 7 5 2 2  9 

5 3 2 2  32 (E) 10 
(E) 31 *16 2 10 
(3 3 3 3) 11 5 5 5 3  10 
6 6  13 *11 3 2 2 8 
4 3 3 2  12 8 5 3 2  8 
8 4  10 *12 6 6 
4 4 2 2  7 * 9 5 2 2  6 
6 2 2 2  5 10 8 6 

9 3 4 2  6 
14 12 2 41 1 6 3 2  5 

9 5  36 9 4 2 3  5 

1 1  30 * 6 2 3 3 2 2  5 

5 3 3 3  18 20 1 7 3 3  11 
* 1 3 2 2  11 *11 3 3 3 11 

5 3 4 2  15 17 3 11 
* 6 3 3 2  15 *15 5 11 
*10 4 11 * 1 6 2 5  10 

5 4 2 3  10 - - 
8 6  1 

(2) 33 * 8 6 2 2  5 

11 3 2 1  

- - 
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section 5 ensures that faults can also occur at slow fault positions, resulting in the 
formation of bands with an even number of layers. 

As mentioned in the introduction, an explanation for the statistical distribution of 
Zhdanov numbers in ZnS polytypes by a model based on the periodic slip mechanism 
has already been put forward by Mardix (1986). It made various assumptions on the 
thermodynamic stability of cubic domains of various sizes with temperature and hence, 
as the latter is not known, does not seem to allow a quantitative analysis. Nevertheless, 
some of the more qualitative arguments given by Mardix also apply to the present model. 
For example, the fact that the number of occurrences of a certain Zhdanov number, k ,  
decreases roughly as g(k)  = A(1/2)2k (or g ( k )  = B(1/2)2k+' ) ,  with separate prefactors 
A and B for the even and odd numbers respectively, follows simply from the con- 
sideration that, given a spin sequence (3111), it is equally likely that, after the intro- 
duction of a fault, one of the sequences (51) or (33) is formed. Hence the probability of 
finding a 5 is half the probability of finding a 3. Also, even numbers are only formed by 
a special process from configurations like (31), (51), . . . . 

The present model has the advantage of allowing a quantitative analysis. It also yields 
an explanation for the segmentation of whiskers into different polytypic regions, and it 
is consistent with the transformation mechanism for crystals not containing dislocations 
(section 3). Furthermore, we now understand why in all experimentally observed poly- 
types containing 1s all the other numbers have odd values only. These polytypes are 
formed if the transformation process is frozen in at an early stage. Then ( ( 5 ) )  the fault 
probability is mainly determined by P,/CII~, making the occurrence of a slow fault in 
order to create an even Zhdanov number extremely unlikely. 

A crucial test of the model would be to determine the structures of neighbouring 
regions in a whisker and to see whether they indeed contain faults which are incompatible 
in the sense that neither of them can proceed in the adjacent region because of a positive 
stacking fault energy. Of course, there might be some cases when the movement of a 
fault was simply frozen-in once the temperature became too low, which can also give 
rise to a border between regions. It would further be interesting to determine experi- 
mentally the fault velocity of the two types of fault proposed in this paper. Polytypes 
containing 1s should be readily obtainable by cooling down the whiskers rapidly. A lot 
of theoretical work is needed to understand the initial creation and propagation of faults 
at the atomic level in a covalent-ionic material such as ZnS. 

Finally, it should be noted that a few polytypes such as (50 4) containing extremely 
long bands of parallel spins cannot be explained by the proposed model. Their existence 
indicates that there are experimental situations when the initial insertion of faults does 
not occur purely at random. Local stress fields might have caused the instantaneous 
introduction of a number of faults at two-layer separations in these specimens; if these 
faults propagate round the SD all at once, a polytype with extremely large bands might 
result. 

7. Conclusions 

The bewildering variety of polytypic structures found in ZnS, containing bands both 
with an even and odd number of layers, has been explained as the result of a dynamical 
process governing the transformation from the hexagonal to the cubic phase in the 
presence of a giant screw dislocation. The process is driven by the negative stacking fault 
energies of single deformation faults in this material, and the actual structures result 
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from the interaction of such faults and their different velocities. In the absence of a SD, 
the transformation ends up in a metastable disordered cubic phase whose diffraction 
pattern is similar to those observed experimentally for highly twin-faulted cubic crystals. 
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